Octahedrons with equally many lattice points and generalizations
نویسندگان
چکیده
While counting lattice points in octahedra of different dimensions n and m, it is an interesting question to ask, how many octahedra exist containing equally many such points. This gives rise to the Diophantine equation Pn(x) = Pm(y) in rational integers x, y, where {Pk(x)} denote special Meixner polynomials {M (β,c) k (x)} with β = 1, c = −1. We join the purely algebraic criterion of Y. Bilu and R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288) with a famous result of P. Erdös and J. L. Selfridge (The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292–301) and prove that M (β,c1) n (x) = M (β,c2) m (y) with m,n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n,m) + 1} and c1, c2 ∈ Q \ {0, 1} only admits a finite number of integral solutions x, y. Some more results on polynomial families in three-term recurrences are presented. Résumé. Dans l’étude du dénombrement de sommets d’octaèdres de dimensions n et m se pose la question intéressante de connâıtre combien d’octaèdres existent possédant le même nombre de sommets. Ce problème se traduit par l’équation diophantienne Pn(x) = Pm(y), avec x, y entiers relatifs et où {Pk(x)} sont les polynômes spéciaux de Meixner avec β = 1, c = −1. Nous joignons au critère purement algébrique de Y. Bilu et R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288) un fameux résultat dû à P. Erdös et J. L. Selfridge (The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292–301) et prouvons que M (β,c1) n (x) = M (β,c2) m (y) avec m,n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n,m) + 1} et c1, c2 ∈ Q \ {0, 1} n’admet qu’un nombre fini de solutions entières x, y. De plus, nous présentons quelques résultats portant sur des familles polynômiales avec triple récurrence.
منابع مشابه
Generalizations of Khovanskĭı’s theorems on growth of sumsets in abelian semigroups
We show that if P is a lattice polytope in the nonnegative orthant of R and χ is a coloring of the lattice points in the orthant such that the color χ(a+b) depends only on the colors χ(a) and χ(b), then the number of colors of the lattice points in the dilation nP of P is for large n given by a polynomial (or, for rational P , by a quasipolynomial). This unifies a classical result of Ehrhart an...
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کامل7 Lattice Points and Lattice Polytopes
Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation theory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the theory of lattice polytopes and only sketch their numerous applicatio...
متن کاملSpatial statistics for lattice points on the sphere I: Individual results
We study the spatial distribution of point sets on the sphere obtained from the representation of a large integer as a sum of three integer squares. We examine several statistics of these point sets, such as the electrostatic potential, Ripley's function, the variance of the number of points in random spherical caps, and the covering radius. Some of the results are conditional on t...
متن کاملThe synthesis and mechanism exploration of europium-doped LiYF4 micro-octahedron phosphors with multilevel interiors.
Multi-layered hollow LiYF4:Eu(3+) micro-octahedrons, with about 400 nm of single-layer thickness and 300 nm of interlayer space, have been synthesized via a facile hydrothermal route in the presence of surfactant ethylenediamine tetraacetic acid (EDTA). The mechanisms of the morphology evolution of the LiYF4:Eu micro-octahedrons are investigated in detail. Time-dependent experiments indicate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006